skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Frost, Daniel_A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. SUMMARY The dependence of seismic wave speeds on propagation or polarization direction, called seismic anisotropy, is a relatively direct indicator of mantle deformation and flow. Mantle seismic anisotropy is often inferred from measurements of shear-wave splitting. A number of standard techniques to measure shear-wave splitting have been applied globally; for example, *KS splitting is often used to measure upper mantle anisotropy. In order to obtain robust constraints on anisotropic geometry, it is necessary to sample seismic anisotropy from different directions, ideally using different seismic phases with different incidence angles. However, many standard analysis techniques can only be applied for certain epicentral distances and source–receiver geometries. To search for new ways to detect mantle anisotropy, instead of focusing on the sensitivity of individual phases, we investigate the wavefield as a whole: we apply a ‘wavefield differencing’ approach to (systematically) understand what parts of the seismic wavefield are most affected by splitting due to seismic anisotropy in the mantle. We analyze differences between synthetic global wavefields calculated for isotropic and anisotropic input models, incorporating seismic anisotropy at different depths. Our results confirm that the seismic phases that are commonly used in splitting techniques are indeed strongly influenced by mantle anisotropy. However, we also identify less commonly used phases whose waveforms reflect the effects of anisotropy. For example, PS is strongly affected by splitting due to seismic anisotropy in the upper mantle. We show that PS can be used to fill in gaps in global coverage in shear-wave splitting data sets (for example, beneath ocean basins). We find that PcS is also a promising phase, and present a proof-of-concept example of PcS splitting analysis across the contiguous United States using an array processing approach. Because PcS is recorded at much shorter distances than *KS phases, PcS splitting can therefore fill in gaps in backazimuthal coverage. Our wavefield differencing results further hint at additional potential novel methods to detect and characterize splitting due to mantle seismic anisotropy. 
    more » « less
  2. SUMMARY Seismic traveltime anomalies of waves that traverse the uppermost 100–200 km of the outer core have been interpreted as evidence of reduced seismic velocities (relative to radial reference models) just below the core–mantle boundary (CMB). These studies typically investigate differential traveltimes of SmKS waves, which propagate as P waves through the shallowest outer core and reflect from the underside of the CMB m times. The use of SmKS and S(m-1)KS differential traveltimes for core imaging are often assumed to suppress contributions from earthquake location errors and unknown and unmodelled seismic velocity heterogeneity in the mantle. The goal of this study is to understand the extent to which differential SmKS traveltimes are, in fact, affected by anomalous mantle structure, potentially including both velocity heterogeneity and anisotropy. Velocity variations affect not only a wave's traveltime, but also the path of a wave, which can be observed in deviations of the wave's incoming direction. Since radial velocity variations in the outer core will only minimally affect the wave path, in contrast to other potential effects, measuring the incoming direction of SmKS waves provides an additional diagnostic as to the origin of traveltime anomalies. Here we use arrays of seismometers to measure traveltime and direction anomalies of SmKS waves that sample the uppermost outer core. We form subarrays of EarthScope's regional Transportable Array stations, thus measuring local variations in traveltime and direction. We observe systematic lateral variations in both traveltime and incoming wave direction, which cannot be explained by changes to the radial seismic velocity profile of the outer core. Moreover, we find a correlation between incoming wave direction and traveltime anomaly, suggesting that observed traveltime anomalies may be caused, at least in part, by changes to the wave path and not solely by perturbations in outer core velocity. Modelling of 1-D ray and 3-D wave propagation in global 3-D tomographic models of mantle velocity anomalies match the trend of the observed traveltime anomalies. Overall, we demonstrate that observed SmKS traveltime anomalies may have a significant contribution from 3-D mantle structure, and not solely from outer core structure. 
    more » « less
  3. Abstract Observations of seismic waves that have passed through the Earth's lowermost mantle provide insight into deep mantle structure and dynamics, often on relatively small spatial scales. Here we use SKS, S2KS, S3KS, and PKS signals recorded across a large region including the United States, Mexico, and Central America to study the deepest mantle beneath large swaths of North America and the northeastern Pacific Ocean. These phases are enhanced via beamforming and then used to investigate polarization‐ and propagation direction‐dependent shear wave speeds (seismic anisotropy). A differential splitting approach enables us to robustly identify contributions from anisotropy. Our results show strong seismic anisotropy in approximately half of our study region, indicating that anisotropy may be more prevalent than commonly thought. In some regions, the anisotropy may be induced by flow driven by sinking cold slabs, and in other, more compact regions, by upwelling flow. Measured splitting due to lowermost mantle anisotropy is sufficiently strong to be non‐negligible in interpretations of SKS splitting due to upper mantle anisotropy in certain regions, which may prompt future re‐evaluations of upper mantle anisotropy beneath North and Central America. 
    more » « less
  4. Abstract Heat flux from the core to the mantle provides driving energy for mantle convection thus powering plate tectonics, and contributes a significant fraction of the geothermal heat budget. Indirect estimates of core‐mantle boundary heat flow are typically based on petrological evidence of mantle temperature, interpretations of temperatures indicated by seismic travel times, experimental measurements of mineral melting points, physical mantle convection models, or physical core convection models. However, previous estimates have not consistently integrated these lines of evidence. In this work, an interdisciplinary analysis is applied to co‐constrain core‐mantle boundary heat flow and test the thermal boundary layer (TBL) theory. The concurrence of TBL models, energy balance to support geomagnetism, seismology, and review of petrologic evidence for historic mantle temperatures supportsQCMB∼15 TW, with all except geomagnetism supporting as high as ∼20 TW. These values provide a tighter constraint on core heat flux relative to previous work. Our work describes the seismic properties consistent with a TBL, and supports a long‐lived basal mantle molten layer through much of Earth's history. 
    more » « less